Quantification of ultrasound-induced chain scission in PdII-phosphine coordination polymers.

نویسندگان

  • Jos M J Paulusse
  • Jeroen P J Huijbers
  • Rint P Sijbesma
چکیده

A kinetically inert, reversible coordination polymer (3) was obtained through complexation of dicyclohexylphosphine telechelic poly(tetrahydrofuran) with palladium(II) dichloride. This coordination polymer is unreactive towards palladium(II) dichloride bis(1-diphenylphosphino)dodecane (4), because ligand dissociation in the coordination polymer is slow. However, upon ultrasonication of solutions of 3 in toluene in the presence of 4, formation of palladium(II) heterocomplexes was observed with (31)P NMR spectroscopy. Heterocomplex formation, the consumption of 4, and changes in molecular weight were used to quantify the scission process. In the presence of 60 equivalents of the alkyldiphenylphosphine stopper complex, the reduction in molecular weight was strongly enhanced; over a period of eight hours the weight-averaged molecular weight was reduced from 1.1x10(5) to 2.3x10(4) g mol(-1) while 47 % of the palladium(II) complexes in the coordination polymer had been converted into heterocomplexes. These results show that the system of 3 in combination with scavenger 4 is a suitable system to study the efficiency of ultrasound-induced chain scission of coordination polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selectivity of mechanochemical chain scission in mixed palladium(II) and platinum(II) coordination polymers.

The selectivity of ultrasound induced chain scission was studied in reversible polymers with coordinative bonds (Pd-P and Pt-P) of different strengths in series.

متن کامل

A coumarin dimer probe of mechanochemical scission efficiency in the sonochemical activation of chain-centered mechanophore polymers.

Here we present a coumarin dimer (CD) mechanophore that, when embedded near the mid-chain of poly(methyl acrylate) polymers, activates under pulsed ultrasound conditions to yield coumarin chain-end functional polymers. Quantitative photochemical scission of the CD polymers provides a reference against which the activation efficiency of chain-centered mechanophores in polymers synthesized by con...

متن کامل

Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers.

Perfluorocyclobutane (PFCB) polymer solutions were subjected to pulsed ultrasound, leading to mechanically induced chain scission and molecular weight degradation. (19)F NMR revealed that the new, mechanically generated end groups are trifluorovinyl ethers formed by cycloreversion of the PFCB groups, a process that differs from thermal degradation pathways. One consequence of the mechanochemica...

متن کامل

Bis(diethylamino)(pentafluorophenyl)phosphane – a Push–Pull Phosphane Available for Coordination

A facile large-scale synthesis of the “push–pull”-substituted ligand bis(diethylamino)(pentafluorophenyl)phosphane is reported. A selenophosphorane as well as complexes with CuI and PdCl2, can be formed almost quantitatively from suitable starting materials. The PdII complex shows a square-planar coordination with significant distortions of the Cl–Pd–Cl moiety in the solid state. In contrast, t...

متن کامل

Detection of Ammonia and Phosphine Gas using Heterojunction Biomolecular Chain with Multilayer GaAs Nanopore Electrode

This paper presents Density Functional Theory and Non-Equilibrium Green’s Function based First Principles calculations to explore the sensing property of Adenine and Thymine based hetero-junction chins for Ammonia and Phosphine gas molecules. This modeling and simulation technique plays an important and crucial role in the fast growing semiconductor based nanotechnology field. The hetero-juncti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 12 18  شماره 

صفحات  -

تاریخ انتشار 2006